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Copy the statement of the problem on a piece of 8 1
2 × 11 piece of blank computer paper, and write the

solution underneath. Write neatly. Mathematics should always be written in grammatically correct English,
in complete sentences.

If G is a group, H is a subgroup of G, and K is a subgroup of H, then K is a subgroup of G.
If G is a group, and H and K are subgroups of G, then their intersection H ∩K is a subgroup of G.
A permutation α ∈ Sn is called even if it can be written as a product of an even number of transpositions;

otherwise it is called odd. Exactly half of the permutations in Sn are even.
Set

An = {α ∈ Sn | α is even}.

Then An is a subgroup of Sn, called the alternating subgroup.
Let H be a subgroup of Sn. Then either H consists of even permutations or exactly half of the permu-

tations in H are even. Thus either H ⊂ An, in which case H ∩ An = H, or H ∩ An is exactly half of H.
We outline the proof. Suppose that H is not contained in An and let K = H ∩ An; we want to show that
|H| = 2|K|. Let α ∈ H be an odd permutation. Set αK = {ακ | κ ∈ K}. Then K ∪αK = H, K ∩αK = ∅,
and |K| = |αK|.

Let ρ, τ ∈ Sn be given by

ρ = (1 2 ... n) and τ =

{
(2 n)(3 n-1) ... ((n+1)/2 (n+3)/2) if n is odd;
(2 n)(3 n-1) ... (n/2 (n+4)/2) if n is even.

Set
Dn = {ε, ρ, ρ2, . . . , ρn−1, τ, τρ, τρ2, . . . , τρn−1} ⊂ Sn.

Then Dn is a subgroup of Sn, called the dihedral subgroup. The proof that this is a subgroup follows from
the identity τρ = ρn−1τ .

Set Kn = Dn ∩An. Then Kn is a subgroup of Sn, and either Kn = Dn or Kn is exactly half of Dn. This
quiz examines the relationship between n and the structure of the group Kn.

Problem 1. Let n = 4.
(a) Compute ρ and τ in this case.
(b) Show that K4 is a noncyclic abelian subgroup of S4.

Solution. Let
ρ = (1 2 3 4) and τ = (2,4).

Then
K4 = {ε, ρ2, τρ, τρ3} = {ε, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}.

Since |K4| = 4 and K4 does not contain an elements of order four, it is not cyclic. Since every element in
K4 has order two, it is abelian.

Problem 2. Let n = 5.
(a) Compute ρ and τ in this case.
(b) Show that K5 = D5.

Solution. Let
ρ = (1 2 3 4 5) and τ = (2,5)(3,4).

Then D5 = 〈ρ, τ〉. Since every nontrivial rotation in D5 is a five cycle, they are all even, and since every
reflection fixes one point, they are pairs of transpositions, and so are also even. Thus D5 ≤ A5, so K5 =
D5 ∩A5 = D5.



Problem 3. Let n = 7.
(a) Compute ρ and τ in this case.
(b) Show that K7 is a cyclic subgroup of S7.

Solution. Let
ρ = (1 2 3 4 5 6 7) and τ = (2,7)(3,6)(4,5).

Every rotation is even, and every reflection is odd. Thus K7 = 〈ρ〉 = C7.

Problem 4. Try to generalize the previous problems: what can you say about Kn in the following cases?
(a) n ≡ 0 (mod 4)
(b) n ≡ 1 (mod 4)
(c) n ≡ 2 (mod 4)
(d) n ≡ 3 (mod 4)

Proof. If n is odd, then ρ is a cycle of odd length, so ρ is an even permutation. In this case, every power of
ρ is also even, so

〈ρ〉 = Cn ≤ An.

Since Cn is exactly half of Dn, if one reflection is even, then they all are, because Kn is either exactly half
of Dn, or it is all of Dn.

If n is even, then ρ is a cycle of even length, so ρ is an odd permutation. In this case, even powers of ρ
are even permutation, and odd powers of ρ are odd permutations. Thus

Cn ∩An = 〈ρ2〉.

Now τ always fixes 1, and when n is even, τ fixes two points. The support of τ contains n − 2 points, so
τ consists of (n − 2)/2 disjoint transpositions. If n ≡ 0 (mod 4), then (n − 2)/2 is odd, so τρ is even. If
n ≡ 2 (mod 4), then (n− 2)/2 is even, but τρ is odd. In either case, exactly half of the reflections are even,
and |Kn| = n/2.

(b) n ≡ 1 (mod 4)
We have Cn ≤ An, so Cn ≤ Kn. Every reflection fixes exactly one point, so its support has size n− 1, which
is divisible by 4. The number of transpositions in a reflection is n−1

2 , which is still even, so all the reflections
are in An. Thus Kn = Dn.

(d) n ≡ 3 (mod 4)
We have Cn ≤ An, so Cn ≤ Kn. Every reflection fixes exactly one point, so its support has size n− 1, which
is divisible by 2 but not 4. The number of transpositions in a reflection is n−1

2 , which is odd in this case, so
none of the reflections are in An. Thus Kn = Cn.

(c) n ≡ 2 (mod 4)
We know that Kn contains a cyclic subgroup of order n

2 generated by ρ2. Indeed, Kn consists of even powers
of ρ, and elements of the form τρk where k is even.

Let m = n
2 , and define a function φ : Kn → Dm by φ(α) = φα, where φα ∈ Sm is given by φα(i) =

α(i)−1
2 + 1. Then φ is an isomorphism.

(d) n ≡ 0 (mod 4) Here again, we have Kn
∼= Dn/2, but the correspondence is a little harder to see

because the reflections which allow for visualization of the correspondence have no fixed points.
Let m = n

2 , and define a function φ : Kn → Dm by φ(α) = φα, where φα ∈ Sm is given by φα(i) =
i (mod 3). Then φ is an isomorphism.


