Math 3063	Abstract Algebra	Project 4	Solutions
	Prof. Paul Bailey	April 3, 2009	

Copy the statement of the problem on a piece of $8\frac{1}{2} \times 11$ piece of blank computer paper, and write the solution underneath. Write neatly. Mathematics should always be written in grammatically correct English, in complete sentences.

If G is a group, H is a subgroup of G, and K is a subgroup of H, then K is a subgroup of G.

If G is a group, and H and K are subgroups of G, then their intersection $H \cap K$ is a subgroup of G.

A permutation $\alpha \in S_n$ is called *even* if it can be written as a product of an even number of transpositions; otherwise it is called *odd*. Exactly half of the permutations in S_n are even.

Set

$$A_n = \{ \alpha \in S_n \mid \alpha \text{ is even} \}.$$

Then A_n is a subgroup of S_n , called the *alternating subgroup*.

Let H be a subgroup of S_n . Then either H consists of even permutations or exactly half of the permutations in H are even. Thus either $H \subset A_n$, in which case $H \cap A_n = H$, or $H \cap A_n$ is exactly half of H. We outline the proof. Suppose that H is not contained in A_n and let $K = H \cap A_n$; we want to show that |H| = 2|K|. Let $\alpha \in H$ be an odd permutation. Set $\alpha K = \{\alpha \kappa \mid \kappa \in K\}$. Then $K \cup \alpha K = H$, $K \cap \alpha K = \emptyset$, and $|K| = |\alpha K|$.

Let $\rho, \tau \in S_n$ be given by

$$\rho = (1 \ 2 \ \dots \ n) \quad \text{and} \quad \tau = \begin{cases} (2 \ n) (3 \ n-1) \ \dots \ ((n+1)/2 \ (n+3)/2) & \text{if } n \text{ is odd;} \\ (2 \ n) (3 \ n-1) \ \dots \ (n/2 \ (n+4)/2) & \text{if } n \text{ is even.} \end{cases}$$

Set

$$D_n = \{\epsilon, \rho, \rho^2, \dots, \rho^{n-1}, \tau, \tau\rho, \tau\rho^2, \dots, \tau\rho^{n-1}\} \subset S_n$$

Then D_n is a subgroup of S_n , called the *dihedral subgroup*. The proof that this is a subgroup follows from the identity $\tau \rho = \rho^{n-1} \tau$.

Set $K_n = D_n \cap A_n$. Then K_n is a subgroup of S_n , and either $K_n = D_n$ or K_n is exactly half of D_n . This quiz examines the relationship between n and the structure of the group K_n .

Problem 1. Let n = 4.

(a) Compute ρ and τ in this case.

(b) Show that K_4 is a noncyclic abelian subgroup of S_4 .

Solution. Let

$$\rho =$$
 (1 2 3 4) and $\tau =$ (2,4).

Then

$$K_4 = \{\epsilon, \rho^2, \tau\rho, \tau\rho^3\} = \{\epsilon, (1,2), (3,4), (1,3), (2,4), (1,4), (2,3)\}.$$

Since $|K_4| = 4$ and K_4 does not contain an elements of order four, it is not cyclic. Since every element in K_4 has order two, it is abelian.

Problem 2. Let n = 5. (a) Compute ρ and τ in this case.

(b) Show that $K_5 = D_5$.

Solution. Let

$$\rho = (1 \ 2 \ 3 \ 4 \ 5) \text{ and } \tau = (2,5)(3,4).$$

Then $D_5 = \langle \rho, \tau \rangle$. Since every nontrivial rotation in D_5 is a five cycle, they are all even, and since every reflection fixes one point, they are pairs of transpositions, and so are also even. Thus $D_5 \leq A_5$, so $K_5 = D_5 \cap A_5 = D_5$.

Problem 3. Let n = 7.
(a) Compute ρ and τ in this case.
(b) Show that K₇ is a cyclic subgroup of S₇.

Solution. Let

$$\rho = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7) \text{ and } \tau = (2,7)(3,6)(4,5)$$

Every rotation is even, and every reflection is odd. Thus $K_7 = \langle \rho \rangle = C_7$.

Problem 4. Try to generalize the previous problems: what can you say about K_n in the following cases? (a) $n \equiv 0 \pmod{4}$

(c) $n \equiv 1 \pmod{4}$ (c) $n \equiv 2 \pmod{4}$ (d) $n \equiv 3 \pmod{4}$

Proof. If n is odd, then ρ is a cycle of odd length, so ρ is an even permutation. In this case, every power of ρ is also even, so

$$\langle \rho \rangle = C_n \le A_n$$

Since C_n is exactly half of D_n , if one reflection is even, then they all are, because K_n is either exactly half of D_n , or it is all of D_n .

If n is even, then ρ is a cycle of even length, so ρ is an odd permutation. In this case, even powers of ρ are even permutation, and odd powers of ρ are odd permutations. Thus

$$C_n \cap A_n = \langle \rho^2 \rangle.$$

Now τ always fixes 1, and when n is even, τ fixes two points. The support of τ contains n-2 points, so τ consists of (n-2)/2 disjoint transpositions. If $n \equiv 0 \pmod{4}$, then (n-2)/2 is odd, so $\tau\rho$ is even. If $n \equiv 2 \pmod{4}$, then (n-2)/2 is even, but $\tau\rho$ is odd. In either case, exactly half of the reflections are even, and $|K_n| = n/2$.

(b) $n \equiv 1 \pmod{4}$

We have $C_n \leq A_n$, so $C_n \leq K_n$. Every reflection fixes exactly one point, so its support has size n-1, which is divisible by 4. The number of transpositions in a reflection is $\frac{n-1}{2}$, which is still even, so all the reflections are in A_n . Thus $K_n = D_n$.

(d) $n \equiv 3 \pmod{4}$

We have $C_n \leq A_n$, so $C_n \leq K_n$. Every reflection fixes exactly one point, so its support has size n-1, which is divisible by 2 but not 4. The number of transpositions in a reflection is $\frac{n-1}{2}$, which is odd in this case, so none of the reflections are in A_n . Thus $K_n = C_n$.

(c) $n \equiv 2 \pmod{4}$

We know that K_n contains a cyclic subgroup of order $\frac{n}{2}$ generated by ρ^2 . Indeed, K_n consists of even powers of ρ , and elements of the form $\tau \rho^k$ where k is even.

Let $m = \frac{n}{2}$, and define a function $\phi : K_n \to D_m$ by $\phi(\alpha) = \phi_\alpha$, where $\phi_\alpha \in S_m$ is given by $\phi_\alpha(i) = \frac{\alpha(i)-1}{2} + 1$. Then ϕ is an isomorphism.

(d) $n \equiv 0 \pmod{4}$ Here again, we have $K_n \cong D_{n/2}$, but the correspondence is a little harder to see because the reflections which allow for visualization of the correspondence have no fixed points.

Let $m = \frac{n}{2}$, and define a function $\phi : K_n \to D_m$ by $\phi(\alpha) = \phi_\alpha$, where $\phi_\alpha \in S_m$ is given by $\phi_\alpha(i) = i \pmod{3}$. Then ϕ is an isomorphism.